Optimization of combinational and sequential logic circuits for low power using precomputation

نویسندگان

  • José C. Monteiro
  • John Rinderknecht
  • Srinivas Devadas
  • Abhijit Ghosh
چکیده

Precomputation is a recently proposed logic optimization technique which selectively disables the inputs of a sequential logic circuit, thereby reducing switching activity and power dissipation, without changing logic functionality. In this paper, we present new precomputation architectures for both combinational and sequential logic and describe new precomputation-based logic synthesis methods that optimize logic circuits for low power. We present a general precomputation architecture for sequential logic circuits and show that it is significantly more powerful than the architectures previously treated in the literature. In this architecture, output values required in a particular clock cycle are selectively precomputed one clock cycle earlier, and the original logic circuit is “turned off” in the succeeding clock cycle. The very power of this architecture makes the synthesis of precomputation logic a challenging problem and we present a method to automatically synthesize precomputation logic for this architecture. We introduce a powerful precomputation architecture for combinational logic circuits that uses transmission gates or transparent latches to disable parts of the logic. Unlike in the sequential circuit architecture, precomputation occurs in an early portion of a clock cycle, and parts of the combinational logic circuit are “turned off” in a later portion of the same clock cycle. Further, we are not restricted to perform precomputation on the primary inputs. Preliminary results obtained using the described methods are presented. Upto 66 percent reductions in switching activity and power dissipation are possible using the proposed architectures. For many examples, the proposed architectures result in significantly less power dissipation than previously developed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential logic optimization for low power using input-disabling precomputation architectures

Precomputation is a recently proposed logic optimization technique which selectively disables the inputs of a logic circuit, thereby reducing switching activity and power dissipation, without changing logic functionality. In sequential precomputation, output values required in a particular clock cycle are selectively precomputed one clock cycle earlier, and the original logic circuit is “turned...

متن کامل

Design of Low Power Cmos Logic Circuits Using Gate Diffusion Input (gdi) Technique

The Gate diffusion input (GDI) is a novel technique for low power digital circuit design. This technique reduces the power dissipation, propagation delay, area of digital circuits and it maintains low complexity of logic design. In this paper, the 4×1 Multiplexer, 8×3 Encoder, BCD Counter and Mealy State Machine were implemented by using Pass Transistors (PT), Transmission Gate (TG) and Gate Di...

متن کامل

Test Power Optimization with Reordering of Genetic Test Vectors for Vlsi Circuits

Power optimization is one of the important challenges in VLSI circuit for testing engineers. Larger power dissipation becomes the reason for overheating and with every increase in 10oC in operating temperature, failure rates for the component on a chip doubles. Power dissipation is directly proportional to switching activities of the components on Integrated Circuits. Power optimization is poss...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

Low Power Combinational and Sequential Circuits with Adiabatic Complementary Pass-Transistor Logic (ACPL)

This paper presents low-power characteristics of adiabatic complementary pass-transistor logic (ACPL) using four-phase AC power supply. Adiabatic CPL circuits consist of pure NMOS transistors, use CPL blocks for evaluation and bootstrapped NMOS switches to eliminate non-adiabatic loss of output loads. In this paper, combinational circuit (4-bit ripple carry adder) and sequential circuit (4-bit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995